Extensions 1→N→G→Q→1 with N=C4 and Q=C22×C30

Direct product G=N×Q with N=C4 and Q=C22×C30
dρLabelID
C23×C60480C2^3xC60480,1180

Semidirect products G=N:Q with N=C4 and Q=C22×C30
extensionφ:Q→Aut NdρLabelID
C4⋊(C22×C30) = D4×C2×C30φ: C22×C30/C2×C30C2 ⊆ Aut C4240C4:(C2^2xC30)480,1181

Non-split extensions G=N.Q with N=C4 and Q=C22×C30
extensionφ:Q→Aut NdρLabelID
C4.1(C22×C30) = D8×C30φ: C22×C30/C2×C30C2 ⊆ Aut C4240C4.1(C2^2xC30)480,937
C4.2(C22×C30) = SD16×C30φ: C22×C30/C2×C30C2 ⊆ Aut C4240C4.2(C2^2xC30)480,938
C4.3(C22×C30) = Q16×C30φ: C22×C30/C2×C30C2 ⊆ Aut C4480C4.3(C2^2xC30)480,939
C4.4(C22×C30) = C15×C4○D8φ: C22×C30/C2×C30C2 ⊆ Aut C42402C4.4(C2^2xC30)480,940
C4.5(C22×C30) = C15×C8⋊C22φ: C22×C30/C2×C30C2 ⊆ Aut C41204C4.5(C2^2xC30)480,941
C4.6(C22×C30) = C15×C8.C22φ: C22×C30/C2×C30C2 ⊆ Aut C42404C4.6(C2^2xC30)480,942
C4.7(C22×C30) = Q8×C2×C30φ: C22×C30/C2×C30C2 ⊆ Aut C4480C4.7(C2^2xC30)480,1182
C4.8(C22×C30) = C4○D4×C30φ: C22×C30/C2×C30C2 ⊆ Aut C4240C4.8(C2^2xC30)480,1183
C4.9(C22×C30) = C15×2+ 1+4φ: C22×C30/C2×C30C2 ⊆ Aut C41204C4.9(C2^2xC30)480,1184
C4.10(C22×C30) = C15×2- 1+4φ: C22×C30/C2×C30C2 ⊆ Aut C42404C4.10(C2^2xC30)480,1185
C4.11(C22×C30) = M4(2)×C30central extension (φ=1)240C4.11(C2^2xC30)480,935
C4.12(C22×C30) = C15×C8○D4central extension (φ=1)2402C4.12(C2^2xC30)480,936

׿
×
𝔽